

Soil quality changes after 20 years of conservation tillage

R. Mihelič¹, S. Pintarič², K. Eler², M. Suhadolc¹ (marjetka.suhadolc@bf.uni-lj.si)

1. Center for Soil and Env. Sci., Biotechnical Faculty, University of Ljubljana, Slovenia

2. Chair of applied botany, ecology, plant physiology and informatics, Biotechnical Faculty, University of Ljubljana, Slovenia

Introduction

Effects of conservation soil management on soil quality were studied in the long term field experiment in Moškanjci, Slovenia, which was established in 1999 and shifted from conventional to **organic farming** in 2014.

Long term conservation (minimum) tillage using 4-row Variodisk Evers Agro, 10 cm deep (MT) resulted in stratification of soil organic carbon (SOC) with the highest concentrations in the very topsoil (Fig. 1), as opposed to conventional tillage with mouldboard ploughing, 22 cm deep (CT), which maintained rather uniform distribution down to the ploughing depth.

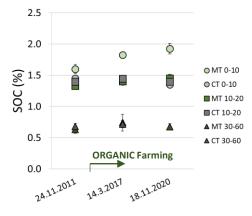


Figure 1. Soil organic carbon (SOC) in Moškanjci under minimum (MT) and conventional tillage (CT). Averages and standard errors are shown.

Similarly, also several other soil properties, such as aggregate stability and water holding capacity, were improved in the upper soil layer of MT in comparison to CT (Table 2, Fig. 2).

Table 2. Water holding capacity in 2011, after 12 years of minimum (MT) and conventional tillage (CT). Averages and standard errors are shown. Different letters indicate significance according to Duncan's test (p < 0.05).

Tillage	Depth [cm]	Infiltration [mm/h]	Field capacity [%]	Wilting point [%]	Plant available water [%]
МТ	0 - 10	166 ± 37	24.8 ± 0.5 a	11.3 ± 0.3 a	13.4 ± 0.7 a
	10-20		23.3 ± 0.3 ab	11.4 ± 0.2 a	11.9 ± 0.3 ab
ст	0 - 10	150 ± 27	22.2 ± 0.2 b	11.9 ± 0.2 a	10.3 ± 0.1 b
	10-20		24.2 ± 0.6 a	11.3 ± 0.2 a	12.9 ± 0.7 a

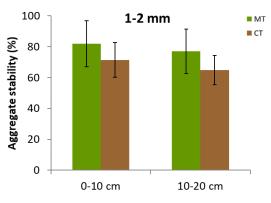


Figure 2. Aggregate stability in Moškanjci (2011) under minimum (MT) and conventional tillage (CT). Averages and standard errors are shown.

The future of farming Profitable and Sustainable Farming with Conservation Agriculture Table 1. Crop yields (dry grain or biomass yields) in Moškanjci under minimum (MT) and conventional tillage (CT), from the beginning of experiment till 2020. Averages and standard deviations are shown.

Year	Сгор	MT (t ha ⁻¹)	CT (t ha⁻¹)	
		Average SD	Average SD	
2000	Winter wheat	6.5 ± 0.6	7.8 ± 0.3	
2001	Winter Barley	5.0 ± 0.5	6.3 ± 0.1	
2002	Maize	7.9 ± 0.4	10.1 ± 0.5	
2003	Maize	2.9 ± 0.1	2.2 ± 0.3	
2004	Sugar beat (biological sugar)	15.6 ± 1.8	15.2 ± 1.4	
2005	Winter wheat	5.0 ± 0.3	5.3 ± 0.1	
2006	Maize	8.0 ± 0.2	8.2 ± 0.2	
2010	Canola (oil rape)	4.4 ± 0.0	3.6 ± 0.1	
2011	Maize	7.4 ± 0.4	7.6 ± 0.5	
2012	Sunflower	1.6 ± 0.0	1.6 ± 0.0	
2013	Winter Rye	4.7 ± 0.2	5.4 ± 0.3	
2014	Legume-grass mixture	Yield not measured		
2015	Winter Barley	3.9 ± 0.5	3.5 ± 0.2	
2016	Soy bean	Yield not measured		
2017	Winter Rye	2.9 ± 0.1	3.1 ± 0.5	
2018	Cover crop mixture	Yield not measured		
2019	Winter Rye (Whole Biomass)	9.4 ± 2.4	9.5 ± 1.5	
	Faba bean (whole biomass)	2.2 ± 0.2	2.4 ± 0.2	
	Weeds (whole biomass)	2.6 ± 0.6	2.6 ± 0.6	
2020	Winter Rye	1.7 ± 0.2	2.1 ± 0.5	
	Maize	2.8 ± 0.7	4.4 ± 0.5	
	Canola (oil rape)	Yield not measured		
	Weeds (whole biomass)	2.9 ± 1.1	3.2 ± 0.2	
Sum	Relative share (MT/CTx100)	93.5	100	

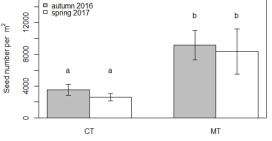


Figure 3. Weed seed bank in soil. Significant effects of tillage (minimum (MT) and conventional tillage (CT)) on (top)soil seed bank quantity (seed number per m^2) in spring and autumn sampling. Averages and standard errors are shown. The letters above indicate statistical differences between treatments (p <0.05).

Conclusions

- Conservation tillage causes vertical soil stratification and significantly **improves** the quality of the soil **surface layer** (organic matter content, aggregate stability, water infiltration and retention).
- Transition to organic agriculture in minimum tillage resulted in higher organic stratification in the upper soil layer.
- Weed suppression is critical in the transition period from conventional to organic farming system, specially under minimum tillage.

Online Congress Bern, Switzerland June 21st-23th, 2021